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Abstract.
This paper develops a model of a learning market-maker by extending the Glosten-

Milgrom model of dealer markets. The market-maker tracks the changing true value of
a stock in settings with informed traders (with noisy signals) and liquidity traders, and
sets bid and ask prices based on its estimate of the true value. We empirically evaluate
the performance of the market-maker in markets with different parameter values to
demonstrate the effectiveness of the algorithm, and then use the algorithm to derive
properties of price processes in simulated markets. When the true value is governed
by a jump process, there is a two regime behavior marked by significant heterogeneity
of information and large spreads immediately following a price jump, which is quickly
resolved by the market-maker, leading to a rapid return to homogeneity of information
and small spreads. We also discuss the similarities and differences between our model
and real stock market data in terms of distributional and time series properties of
returns.
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1. Introduction

Glosten and Milgrom analyze the market-maker’s decision problem in a stylized

model with informed (insider) and uninformed (liquidity) traders [1]. This paper

presents an algorithm for explicitly computing approximate solutions to the expected-

value equations for setting prices in an extension of the Glosten-Milgrom model with

probabilistic shocks to the underlying true price and noisy informed traders. We validate

the algorithm by showing that it produces reasonable market-maker behavior across a

range of simulations, and use the algorithm to study the time series and distributional

properties of returns in our market model and compare them to real stock market data.

We study the impact of different parameters on market properties, and in particular we

show that there is a two regime behavior in which extreme heterogeneity of information



immediately following a jump in the true value (characterized by high spreads and

volatility) is quickly resolved and the market returns to a state of homogeneous

information characterized by low spreads and volatility.

The particular model we investigate extends the Glosten-Milgrom model. Price-

taking informed and uninformed traders interact through a price-setting market-maker.

Informed traders receive a (potentially noisy) signal indicating the true underlying value

of the stock and make buy and sell decisions based on the market-maker’s quotes and

the signal they receive. The true value receives periodic shocks drawn from a Gaussian

distribution. Market-makers receive no information about the true value of the stock and

must base their estimates solely on the order flow they observe. We simulate markets

with both risk-neutral and simple risk-averse market-makers.

Glosten and Milgrom derive the market-maker’s price setting equations under

asymmetric information to be such that the bid quote is the expectation of the true

value given that a sell order is received and the ask quote is the expectation of the

true value given that a buy order is received. These expectations cannot be computed

(except in “toy” instances) without maintaining a probability density estimate over the

true value of the stock, especially when the true value itself may change. We introduce

a nonparametric density estimation technique for maintaining a probability distribution

over the true value that the market-maker can use to set prices. We also present a

method to approximately solve the price setting equations in a realistic situation with

dollars-and-cents quotes and prices. Market-makers using our algorithm in simulations

can successfully achieve low spreads without incurring losses. Market-making agents

are also often constrained by inventory control considerations brought about by risk

aversion [2], so we study the effects of using an inventory control function that is added

as an extra module to the market-making algorithm. The inventory control module

greatly reduces the variance in market-maker profits.

Our simulations yield interesting market properties in different situations. Bid-

ask spreads are higher in more volatile markets, market-makers increase the spread in

response to uncertainty about the true price, the distribution of returns is leptokurtic,

and the autocorrelation of raw returns decays rapidly.

Our approach to microstructure problems in dealer markets falls between the

traditional theoretical models, such as those of Garman [3], Glosten and Milgrom [1] and

Kyle [4] and the agent-based or artificial markets approach adopted by Darley [5] and

Raberto et al [6] among others. We extend the theoretical model of Glosten and Milgrom

into a more realistic setting which is nevertheless much simpler than most agent-based

models. Our study of price properties in simulated markets is related to the burgeoning

econophysics literature that studies statistical properties of price movements in real

markets and their departures from the efficient market hypothesis [7, 8, 9, inter alia].

Much of the econophysics work attempts to work backward from real stock market data

and model price impact functions and thus derive properties of price processes. The

approach of this paper is complementary – it makes the traditional theoretical economic

description richer and derives properties from the theory.
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This paper is organized as follows. We explicitly define our market model and

present the market-making algorithm in section 2 and experimentally evaluate the

algorithm in simulated markets in section 3. In section 4, we present the distributional

and time series properties of returns in our simulated markets, before summarizing in

section 5.

2. The Market Model and Market-Making Algorithm

2.1. Market Model

The market we analyze is a discrete time dealer market with only one stock. The

market-maker sets bid and ask prices (Pb and Pa respectively) at which it is willing to

buy or sell one unit of the stock at each time period (when necessary we denote the

bid and ask prices at time period i as P i
b and P i

a). If there are multiple market-makers,

the market bid and ask prices are the maximum over each dealer’s bid price and the

minimum over each dealer’s ask price. All transactions occur with the market-maker

taking one side of the trade and a member of the trading crowd (henceforth a “trader”)

taking the other side.

The stock has a true underlying value (or fundamental value) V i at time period

i. All market makers are informed of V 0 at the beginning of a simulation, but do not

receive any direct information about V after that‡. At time period i, a single trader is

selected from the trading crowd and allowed to place either a (market) buy or (market)

sell order for one unit of the stock. There are two types of traders in the market,

uninformed traders and informed traders. An uninformed trader will place a buy or sell

order for one unit with equal probability, or no order with some probability if selected

to trade. An informed trader who is selected to trade knows V i and will place a buy

order if V i > P i
a, a sell order if V i < P i

b and no order if P i
b ≤ V i ≤ P i

a.

In addition to perfectly informed traders, we also allow for the presence of noisy

informed traders. A noisy informed trader receives a signal of the true price W i =

V i + η̃(0, σW ) where η̃(0, σW ) represents a sample from a normal distribution with mean

0 and variance σ2
W . The noisy informed trader believes this is the true value of the

stock, and places a buy order if W i > P i
a, a sell order if W i < P i

b and no order if

P i
b ≤ W i ≤ P i

a.

The true underlying value of the stock evolves according to a jump process. At

time i + 1, with probability p, a jump in the true value occurs§. It is also possible to

fix the periodicity of these jumps to model, for example, daily releases of information.

When a jump occurs, the value changes according to the equation V i+1 = V i + ω̃(0, σ)

where ω̃(0, σ) represents a sample from a normal distribution with mean 0 and variance

σ2. Market-makers are informed of when a jump has occurred, but not of the size or

direction of the jump.

‡ That is, the only signals a market-maker receives about the true value of the stock are through the
buy and sell orders placed by the trading crowd.
§ p is typically small, of the order of 1 in 1000 in most of our simulations
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This model of the evolution of the true value corresponds to the notion of the true

value evolving as a result of occasional news items. The periods immediately following

jumps are the periods in which informed traders can trade most profitably, because the

information they have on the true value has not been disseminated to the market yet,

and the market maker is not informed of changes in the true value and must estimate

these through orders placed by the trading crowd. The market-maker will not update

prices to the neighborhood of the new true value for some period of time immediately

following a jump in the true value, and informed traders can exploit the information

asymmetry.

2.2. The Market-Making Algorithm

The market-maker attempts to track the true value over time by maintaining a

probability distribution over possible true values and updating the distribution when

it receives signals from the orders that traders place. The true value and the market-

maker’s prices together induce a probability distribution on the orders that arrive in the

market. The market-maker must maintain an online probabilistic estimate of the true

value.

Glosten and Milgrom [1] analyze the setting of bid and ask prices so that the market

maker enforces a zero profit condition. The zero profit condition corresponds to the Nash

equilibrium in a setting with competitive market-makers. Glosten and Milgrom suggest

that the market maker should set Pb = E[V |Sell] and Pa = E[V |Buy]. Our market-

making algorithm computes these expectations using the probability density function

being estimated.

Various layers of complexity can be added on top of the basic algorithm. For

example, minimum and maximum conditions can be imposed on the spread, and an

inventory control mechanism could form another layer after the zero-profit condition

prices are decided. We describe the density estimation technique in detail before

addressing other possible factors that market-makers can take into account in deciding

how to set prices. For simplicity of presentation, we neglect noisy informed traders in

the initial derivation, and present the updated equations for taking them into account

later.

2.2.1. Derivation of Bid and Ask Price Equations Let α be the proportion of informed

traders in the trading crowd, and let η be the probability that an uninformed trader

places a buy (or sell) order. Then the probability that an uninformed trader places no

order is 1− 2η.

In order to estimate the expectation of the underlying value, it is necessary to

compute the conditional probability that V = x given that a particular type of order is

received. Taking market sell orders as an example:

E[V |Sell] =

∫ ∞

0

x Pr(V = x|Sell) dx

4



To explicitly (approximately) compute these values, we discretize the X-axis into

intervals, with each interval representing one cent. Then we get:

E[V |Sell] =

Vi=Vmax∑
Vi=Vmin

Vi Pr(V = Vi|Sell)

Applying Bayes’ rule and simplifying:

E[V |Sell] =

Vi=Vmax∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi)

Pr(Sell)

The a priori probability of a sell order (denoted by PSell) can be computed by taking

advantage of the fact that informed traders will always sell if V < Pb and never sell

otherwise, while uninformed traders will sell with a constant probability:

PSell =

Vi=Vmax∑
Vi=Vmin

Pr(Sell|V = Vi) Pr(V = Vi)

=

Vi=Pb−1∑
Vi=Vmin

[(α + (1− α)η) Pr(V = Vi)] +

Vi=Vmax∑
Vi=Pb

[((1− α)η) Pr(V = Vi)](1)

Since Pb is set by the market maker to E[V |Sell] :

Pb =
1

PSell

Vi=Vmax∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi)

Since Vmin < Pb < Vmax,

Pb =
1

PSell

Vi=Pb−1∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi) +

1

PSell

Vi=Vmax∑
Vi=Pb

Vi Pr(Sell|V = Vi) Pr(V = Vi) (2)

The term Pr(Sell|V = Vi) is constant within each sum, because of the influence of

informed traders. An uninformed trader is equally likely to sell whatever the market

maker’s bid price. On the other hand, an informed trader will never sell if V > Pb.

Therefore, Pr(Sell|V < Pb) = (1− α)η + α and Pr(Sell|V ≥ Pb) = (1− α)η. The above

equation reduces to:

Pb =
1

PSell

(
Vi=Pb−1∑
Vi=Vmin

((1− α)η + α)Vi Pr(V = Vi) +

Vi=Vmax∑
Vi=Pb

((1− α)η)Vi Pr(V = Vi)

)
(3)

Using a precisely parallel argument, we can derive the expression for the market-

maker’s ask price. First, we note that the prior probability of a buy order, PBuy is:

PBuy =

Vi=Pa∑
Vi=Vmin

[((1− α)η) Pr(V = Vi)] +

Vi=Vmax∑
Vi=Pa+1

[(α + (1− α)η) Pr(V = Vi)] (4)
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Then Pa is the solution to the equation:

Pa =
1

PBuy

(
Vi=Pa∑

Vi=Vmin

((1− α)η)Vi Pr(V = Vi) +

Vi=Vmax∑
Vi=Pa+1

((1− α)η + α)Vi Pr(V = Vi)

)
(5)

2.2.2. Accounting for Noisy Informed Traders An interesting feature of the

probabilistic estimate of the true value is that the probability of buying or selling is

the same conditional on V being smaller than or greater than a certain amount. For

example, Pr(Sell|V = Vi, Vi ≤ Pb) is a constant, independent of V . If we assume that all

informed traders receive noisy signals, with the noise normally distributed with mean 0

and variance σ2
W , and, as before, α is the proportion of informed traders in the trading

crowd, then equation 2 still applies. Now the probabilities Pr(Sell|V = Vi) are no longer

determined solely by whether Vi < Pb or Vi ≥ Pb. Instead, the new equations are:

Pr(Sell|V = Vi, Vi ≤ Pb) = (1− α)η + α Pr(η̃(0, σ2
W ) < (Pb − Vi)) (6)

Pr(Sell|V = Vi, Vi > Pb) = (1− α)η + α Pr(η̃(0, σ2
W ) > (Vi − Pb)) (7)

The second term in the first equation reflects the probability that an informed

trader would sell if the fundamental value were less than the market-maker’s bid price.

This will occur as long as W = V + η̃(0, σ2
W ) < Pb. The second term in the second

equation reflects the same probability under the assumption that V ≥ Pb.

We can compute the conditional probabilities for buy orders equivalently:

Pr(Buy|V = Vi, Vi ≤ Pa) = (1− α)η + α Pr(η̃(0, σ2
W ) > (Pa − Vi)) (8)

Pr(Buy|V = Vi, Vi > Pa) = (1− α)η + α Pr(η̃(0, σ2
W ) < (Vi − Pa)) (9)

Now, we have the new buy and sell priors:

PSell =

Vi=Pb−1∑
Vi=Vmin

[
α Pr(η̃(0, σ2

W ) < (Pb − Vi)) + (1− α)η
]
Pr(V = Vi) +

Vi=Vmax∑
Vi=Pb

[
α Pr(η̃(0, σ2

W ) > (Vi − Pb)) + (1− α)η
]
Pr(V = Vi) (10)

PBuy =

Vi=Pa∑
Vi=Vmin

[
α Pr(η̃(0, σ2

W ) > (Pa − Vi)) + (1− α)η
]
Pr(V = Vi) +

Vi=Vmax∑
Vi=Pa+1

[
(α Pr(η̃(0, σ2

W ) < (Vi − Pa) + (1− α)η)
]
Pr(V = Vi) (11)

We can substitute these conditional probabilities back into the fixed point equations

and the density update rule used by the market-maker. Combining equations 2, 6 and
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7, and using the sell prior from equation 10

Pb =
1

PSell

Vi=Pb∑
Vi=Vmin

[
((1− α)η + α Pr(η̃(0, σ2

W ) < (Pb − Vi)))Vi Pr(V = Vi)
]
+

1

PSell

Vi=Vmax∑
Vi=Pb+1

[
((1− α)η + α Pr(η̃(0, σ2

W ) > (Vi − Pb)))Vi Pr(V = Vi)
]

(12)

Similarly, for the ask price, using the buy prior from equation 11:

Pa =
1

PBuy

Vi=Pa∑
Vi=Vmin

[
((1− α)η + α Pr(η̃(0, σ2

W ) > (Pa − Vi)))Vi Pr(V = Vi)
]
+

1

PBuy

Vi=Vmax∑
Vi=Pa+1

[
((1− α)η + α Pr(η̃(0, σ2

W ) < (Vi − Pa)))Vi Pr(V = Vi)
]
(13)

2.2.3. Approximately Solving the Equations A number of problems arise with the

analytical solution of these discrete equations for setting the bid and ask prices. Most

importantly, we have not yet specified the probability distribution for priors on V ,

and any reasonably complex solution leads to a form that makes analytical solution

infeasible. Secondly, the values of Vmin and Vmax are undetermined. And finally, actual

solution of these fixed point equations must be approximated in discrete spaces. We

solve each of these problems in turn to construct an approximate solution to the problem.

We assume that the market-making agent is aware of the true value at time 0,

and from then onwards the true value infrequently receives random shocks (or jumps)

drawn from a normal distribution (the variance of which is known to the agent). Our

market-maker constructs a vector of prior probabilities on various possible values of V

as follows.

If the initial true value is V0 (when rounded to an integral value in cents), then

the agent constructs a vector going from V0 − 4σ to V0 + 4σ − 1 to contain the prior

value probabilities. The probability that V = V0 − 4σ + i is given by the ith value

in this vector‖. The vector is initialized by setting the ith value in the vector to∫ −4σ+i+1

−4σ+i
N (0, σ) dx where N is the normal density function in x with specified mean

and variance. The vector is maintained in a normalized state at all times so that the

entire probability mass for V lies within it.

The fixed point equations 12 and 13 are approximately solved by using the result

from Glosten and Milgrom that Pb ≤ E[V ] ≤ Pa and then, to find the bid price, for

example, cycling from E[V] downwards until the difference between the left and right

hand sides of the equation stops decreasing. The fixed point real-valued solution must

then be closest to the integral value at which the distance between the two sides of the

equation is minimized.

‖ The true value can be a real number, but for all practical purposes it ends up getting truncated to
the floor of that number.
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2.2.4. Updating the Density Estimate The market-maker receives probabilistic signals

about the true value. With perfectly informed traders, each signal says that with a

certain probability, the true value is lower (higher) than the bid (ask) price. With

noisy informed traders, the signal differentiates between different possible true values

depending on the market-maker’s bid and ask quotes. Each time that the market-maker

receives a signal about the true value by receiving a market buy or sell order, it updates

the posterior on the value of V by scaling the distributions based on the type of order.

The Bayesian updates are easily derived. For example, for Vi ≤ Pa and market buy

orders:

Pr(V = Vi|Buy) =
Pr(Buy|V = Vi) Pr(V = Vi)

Pr(Buy)

The prior probability V = Vi is known from the density estimate, the prior probability of

a buy order is known from equation 11, and Pr(Buy|V = Vi, Vi ≤ Pa) can be computed

from equation 8. We can compute the posterior similarly for each of the cases. One

case that is instructive to look at since we have not derived it above is the case when

no order is received.

Pr(V = Vi|No order) =
Pr(No order|V = Vi) Pr(V = Vi)

Pr(No order)

Now,

Pr(No order|V = Vi, Vi < Pb) = (1− α)(1− 2η) + α Pr(η̃(0, σ2
W ) > (Pb − Vi))

Pr(No order|V = Vi, Pb ≤ Vi ≤ Pa) = (1− α)(1− 2η) +

α
[
Pr(Pb − Vi < η̃(0, σ2

W )) + Pr(Vi − Pa < η̃(0, σ2
W ))

]

Pr(No order|V = Vi, Vi > Pa) = (1− α)(1− 2η) + α Pr(Vi − Pa < η̃(0, σ2
W ))

which allows us to compute the prior as well as all the terms in the numerator.

In the case of perfectly informed traders, the signal only specifies that the true

value is higher or lower than some price, and not how much higher or lower. In that

case, the update equations are as follows. If a market buy order is received, this is a

signal that with probability (1 − α)η + α, V > Pa. Similarly, if a market sell order is

received, the signal indicates that with probability (1− α)η + α, V < Pb.

In the former case, all probabilities for V = Vi, Vi > Pa are multiplied by (1−α)η+α,

while all the other discrete probabilities are multiplied by 1−α−(1−α)η. Similarly, when

a sell order is received, all probabilities for V = Vi, Vi < Pb are multiplied by (1−α)η+α,

and all the remaining discrete probabilities are multiplied by 1 − α − (1 − α)η before

renormalizing.

These updates lead to less smooth density estimates than the updates for noisy

informed traders, as can be seen from figure 1, which shows the density functions 0, 3

and 6 steps after a jump in the underlying value of the stock. The update equations that

consider noisy informed traders smoothly transform the probability distribution around

the last transaction price by a mixture of a Gaussian and a uniform density, whereas the

update equations for perfectly informed traders discretely shift all probabilities to one

side of the transaction price in one direction and on the other side of the transaction
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Figure 1. The evolution of the market-maker’s probability density estimate with
noisy informed traders (left) and perfectly informed traders (right)

price in the other direction. The estimates for perfectly informed traders are more

susceptible to noise, as they do not restrict most of the mass of the probability density

function to as small an area as the estimates for noisy informed traders.

3. Experimental Evaluation

3.1. Experimental Framework

Unless specified otherwise, it can be assumed that all simulations take place in a market

populated by noisy informed traders and uninformed traders. The noisy informed

traders receive a noisy signal of the true value of the stock with the noise term being

drawn from a Gaussian distribution with mean 0 and standard deviation 5 cents. The

standard deviation of the jump process for the stock is 50 cents, and the probability of

a jump occurring at any time step is 0.001. The probability of an uninformed buy or

sell order is 0.5. The market-maker is informed of when a jump occurs, but not of the

size or direction of the jump. The market-maker may use an inventory control function

(defined below) and can increase the spread by lowering the bid price and raising the

ask price by a fixed amount (this is done to ensure profitability and is also explained

below). We report average results from 200 simulations, each lasting 50,000 time steps.

3.2. Prices Near a Jump

Figure 2 shows that the market-maker successfully tracks the true value over the course

of an entire simulation. These results are from a simulation with half the traders

being perfectly informed and the other half uninformed. The bid-ask spread reflects

the market-maker’s uncertainty about the true value — for example, it is much higher

immediately after the true value has jumped.

Figure 2 also demonstrates that the asymmetry of information immediately

following a price jump gets resolved very quickly. To investigate this further, we tracked
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Figure 2. The market-maker’s tracking of the true price over the course of the
simulation (left) and immediately before and after a price jump (right)
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Figure 3. Average spread following a price jump for two different values of the
standard deviation of the jump process

the average spread immediately following a price jump in a similar market environment

(except with noisy informed traders instead of perfectly informed ones). The results of

this experiment are shown in figure 3. It is clear that the informational asymmetry gets

resolved very quickly (within thirty trades) independently of the standard deviation of

the jump process.

3.3. Profit Motive

The zero-profit condition of Glosten and Milgrom is expected from game theoretic

considerations when multiple competitive dealers are making markets in the same stock.

However, since our method is an approximation scheme, the zero profit method is

unlikely to truly be zero-profit. Further, the market-maker is not always in a perfectly

competitive scenario where it needs to restrict the spread as much as possible.
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Figure 4. Market-maker profits as a function of increasing the spread

The simplest solution to the problem of making profit is to increase the spread

by pushing the bid and ask prices apart after the zero-profit bid and ask prices have

been computed using the density estimate obtained by the market-making algorithm.

Figure 4 shows the profit obtained by a single monopolistic market-maker in markets

with different percentages of informed traders. The numbers on the X axis show the

amount (in cents) that is subtracted from (added to) the zero-profit bid (ask) price in

order to push the spread apart (we will refer to this number as the shift factor).

With lower spreads, most of the market-maker’s profits come from the noise factor

of the informed traders, whereas with a higher spread, most of the market-maker’s

profits come from the trades of uninformed traders. Different percentages of informed

traders lead to differently shaped profit curves. For example, there is a sharper jump

in the transition from a shift factor of 0 to a shift factor of 1 with fewer noisy informed

traders (50% or 70%) whereas with 90% noisy informed traders the sharper jump is in

going from a shift factor of 1 to a shift factor of 2. With only 50% of the traders being

informed, the market-maker’s profit keeps increasing with the size of the spread.

However, increasing the spread beyond a point is counterproductive if there are

enough noisy informed traders in the markets, because then the market-maker’s prices

are far enough away from the true value that even the noise factor cannot influence

the informed traders to make trades. With 90% of the traders being informed, a global

maximum (at least for reasonable spreads) is attained with a low spread. This is where

the tradeoff between not increasing the spread too much in order to profit from the noise

in the informed traders’ signals and increasing the spread more to profit more from

uninformed traders is optimized. On the opposite end of the spectrum, the market-

maker’s profits increase smoothly and uniformly with the spread when there are only

perfectly informed traders in the market in addition to the uninformed traders, since all

the market-maker’s profits are from the uninformed traders.

It is important to note that market-makers can make reasonable profits with low
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average spreads. For a market with 70% of the trading crowd consisting of noisy

informed traders and the remaining 30% consisting of uninformed traders, our algorithm,

using a shift factor of 1, achieves an average profit of 1.17 cents per time period with an

average spread of 2.28 cents. Using a shift factor of 0, the average profit is −0.06 cents

with an average spread of 0.35 cents. These parameter settings in this environment

yield a market-maker that is close to a Nash equilibrium player, and it is unlikely that

any algorithm would be able to outperform this one in direct competition in such an

environment given the low spread. An interesting avenue to explore is the possibility of

adaptively changing the shift factor depending on the level of competition in the market.

Clearly, in a monopolistic setting, a market-maker is better off using a high shift factor,

whereas in a competitive setting it is likely to be more successful using a smaller one.

An algorithm for changing the shift factor based on the history of other market-makers’

quotes would be useful.

3.4. Inventory Control

Stoll analyzes dealer costs in conducting transactions and divides them into three

categories [10]. These three categories are portfolio risk, transaction costs and the cost

of asymmetric information. In the model we have presented so far, following Glosten and

Milgrom [1], we have assumed that transactions have zero execution cost and developed

a pricing mechanism that explicitly attempts to set the spread to account for the cost

of asymmetric information. A realistic model for market-making necessitates taking

portfolio risk into account and controlling inventory in setting bid and ask prices. In the

absence of consideration of trade size and failure conditions, portfolio risk should affect

the placement of the bid and ask prices, but not the size of the spread¶ [2, 10, 11]. If

the market-maker has a long position in the stock, minimizing portfolio risk is achieved

by lowering both bid and ask prices, and if the market-maker has a short position,

inventory is controlled by raising both bid and ask prices.

Inventory control can be incorporated into the architecture of our market-making

algorithm by using it as an adjustment parameter applied after bid and ask prices have

been determined by equations 12 and 13. A simple inventory control technique we

investigate here is to raise or lower the bid and ask prices by a linear function of the

inventory holdings of the market-maker. The amount added to the bid and ask prices is

−γI where I is the amount of inventory held by the market-maker (negative for short

positions) and γ is a risk-aversion coefficient.

Table 1 shows statistics indicating the effectiveness of the inventory control module

for minimizing market-maker risk and the effects of using different values of γ. The

figures use the absolute value of the difference between last true value and initial true

value as a proxy for market volatility. 200 simulations were run for each experiment,

and 70% of the traders were noisy informed traders, while the rest were uninformed.

¶ One would expect spread to increase with the trade size. The size of the spread is, of course, affected
by the adverse selection arising due to the presence of informed traders.
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γ 0 0.1 1

Average (absolute) inventory holdings 1387.2 9.74 1.66

Profit (cents per period) 1.169 0.757 0.434

Standard Deviation of profit 9.3813 0.0742 0.0178

Table 1. Average absolute value of MM inventory at the end of a simulation, average
profit achieved and standard deviation of per-simulation profit for market-makers with
different levels of inventory control

Shift σ p Spread Profit

0 50 .001 0.3479 -0.0701

0 50 .005 1.6189 -0.1295

0 100 .001 0.6422 -0.0694

0 100 .005 3.0657 -0.2412

1 50 .001 2.3111 0.7738

1 50 .005 3.5503 0.6373

1 100 .001 2.6142 0.7629

1 100 .005 4.9979 0.6340

Table 2. Market-maker average spreads (in cents) and profits (in cents per time
period) as a function of the shift (amount added to ask price and subtracted from
bid price), standard deviation of the jump process (σ) and the probability of a jump
occurring at any point in time (p)

The market-maker used a shift factor of 1 for increasing / decreasing the ask / bid prices

respectively.

3.5. The Effects of Volatility

Volatility of the underlying true value process is affected by two parameters. One is

the standard deviation of the jump process, which affects the variability in the amount

of each jump. The other is the probability with which a jump occurs. Table 2 shows

the result of changing the standard deviation σ of the jump process and the probability

p of a jump occurring at any point in time. As expected, the spread increases with

increased volatility, both in terms of σ and p. The precise dependence of the expected

profit and the average spread on the values of σ and p are interesting. For example,

increasing p for σ = 100 has a more significant percentage impact on the spread than

the same increase when σ = 50. This is probably because the mean reflects the relative

importance of the symmetric and asymmetric information regimes, which is affected by

p.

13



Case Profit Loss of expectation Average spread

Known 0.7693 0.7546 2.3263

Unknown −0.6633 4.5616 4.3708

Table 3. Average profit (in cents per time period), loss of expectation and average
spread (cents) with jumps known and unknown

3.6. Accounting for Jumps

The great advantage of our algorithm for density estimation and price setting is that it

quickly restricts most of the probability mass to a relatively small region of values/prices,

which allows the market-maker to quote a small spread and still break even or make

profit. The other side of this equation is that once the probability mass is concentrated

in one area, the probability density function on other points in the space becomes small.

In some cases, it is not possible to seamlessly update the estimate through the same

process if a price jump occurs. Another problem is that a sequence of jumps could lead

to the value leaving the [−4σ, 4σ] window used by the density estimation technique.

In the discussion above, we have assumed that the market-maker is explicitly

informed of when a price jump has occurred, although not of the size or direction of the

jump. The problem can be solved by recentering the distribution around the current

expected value and reinitializing in the same way in which the prior distribution on the

value is initially set up. The “unknown jump” case is more complicated. An interesting

avenue for future work, especially if trade sizes are incorporated into the model, is to

devise a formal mathematical method for deciding when to recenter the distribution. An

example of such a method would be to learn a classifier that is good at predicting when

a price jump has occurred. Perhaps there are particular types of trades that commonly

occur following price jumps, especially when limit orders and differing trade sizes are

permitted. Sequences of such trades may form patterns that predict the occurrence of

jumps in the underlying value.

An example of a very simple rule that demonstrates the feasibility of such an idea

is to recenter based on some notion of order imbalance. Such a rule could recenter

when there have been k more buy orders than sell orders (or vice versa) in the last n

time steps. Table 3 shows the results obtained using n = 10 and k = 5 values with

the market-maker increasing (decreasing) the ask (bid) price by 1 cent beyond the zero

profit case, and using linear inventory control with γ = 0.1. The loss of the expectation

is defined as the average of the absolute value of the difference between the true value

and the market-maker’s expectation of the true value at each point in time. While this

rule makes a loss, the spread is reasonable and the expectation is not too far away on

average from the true value. This demonstrates that it is reasonable to assume that

there are endogenous ways for market-makers to know when jumps have occurred.
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4. Time Series and Distributional Properties of Returns

We can utilize the market and price-setting models developed so far in order to derive

price properties in the simulated market and compare these properties to what is seen in

real markets by analyzing return data for ten stocks from the TAQ database. Obviously

our model’s simplicity means that it will not capture many of the features of real data.

This discussion is intended to highlight where our model agrees and disagrees with

real data and to hypothesize why these differences occur and whether they can be

accommodated by additions to the model.

We use standardized log returns for all discussion in this section, using fifty discrete

time periods as the length of time for simulation returns and five minutes for stock

returns. The simulation data we report is averaged over 100 runs of 50,000 time steps

each with 70% informed traders and the market-maker using inventory control with

γ = 1 and increasing the ask price and decreasing the bid price by one cent beyond the

zero-profit computation in order to ensure profitability. The probability of a jump in

the true value at any time, p = 0.005 and the standard deviation of the jump process

σ = 50 (cents). The stock data from the TAQ database is for ten randomly selected

component stocks of the S&P 500 index for the year 2002+.

Liu et al present a detailed analysis of the time series properties of returns in a

real equity market (they focus on the S&P 500 and component stocks) [12]. Their

major findings are that return distributions are leptokurtic and fat-tailed, with power-

law decay in the tails, volatility clustering occurs and the autocorrelation of absolute

values of returns is persistent over large time scales (again with power-law decay), as

opposed to the autocorrelation of raw returns, which disappears rapidly∗. The recent

econophysics literature has seen a growing debate about the origin of power laws in

such data, for example, the theory of Gabaix et al [7, 13] and the alternative analysis

of Farmer and Lillo [8].

Our simulation results show rapid decay of autocorrelation of raw returns (the

coefficient is already at noise levels at lag 1). Bouchaud et al [9] discuss how prices are

a random walk because of a critical balance between liquidity takers who place market

orders and create temporal correlations in the sign of trades because they do not wish

to place huge orders that move the market immediately, and liquidity providers who

attempt to mean-revert the price. In our model, all the traders except the market

maker are liquidity takers, and they have an even harsher restriction on the trade size

they can place. We explicitly model the price-setting process of the liquidity provider,

and our results show that the autocorrelation of raw returns decays rapidly and arbitrage

opportunities do not arise.

+ The symbols for the ten stocks are CA, UNP, AMAT, GENZ, GLK, TNB, PMTC RX, UIS and
VC. Of these the first four are considered large cap (with market capitalizations in excess of 6 billion
dollars) and the other six are small cap.
∗ Liu et al are not the first to discover these properties of financial time series. However, they summarize
much of the work in an appropriate fashion and provide detailed references, and they present novel
results on the power law distribution of volatility correlation.
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Figure 5. Autocorrelation of raw returns for small and large cap stocks (the dotted
lines represent noise levels computed as ±3/

√
N where N is the length of the time

series

Looking at the real data, there is a negative serial correlation of raw returns at one

lag for the small cap stocks (figure 5). This may be because of less trading in these

stocks. In our model, we do not get this spike if we look at price changes over fifty

periods, but if we look at them over fewer discrete time periods (say one or two) instead

of fifty, we can see a statistically significant negative autocorrelation at one lag as well.

In terms of absolute returns, the real data shows a pronounced daily trend, with the

autocorrelation coefficient spiking at the lag corresponding to one day (figure 6). This

one day periodicity probably corresponds to opening and closing procedures (which also

cause the spread to widen). We can replicate part of this phenomenon in our model

by fixing the periodicity of shocks to the true value. This part corresponds to our

intuition of major information shocks coming at the beginning of trading days, and

induces a concept of the beginning of the trading day among agents in the market.

However, it is hard to model the fact that the autocorrelation coefficient is higher for

lags corresponding to, say three-quarters of a day in this model. This is because the

agents in our model don’t have a notion of the market closing, which may be what drives

up the coefficient for these lags in real data. Perhaps a model in which the market-maker

is sure that a price jump has occurred at the beginning of trading days, but also assumes

the possibility of unknown jumps later in the day could explain these facts.

Simulations using our model yield return distributions with some similarities to

stock market data, as can be seen from figure 7. The distribution of returns in our

simulations is leptokurtic, although it does not decay with a power law tail, suggesting

that our model needs further extensions before contributing to the debate on their origin.

A huge proportion of the returns are very small, and virtually all of these occur in the

symmetric information regime, and there are very few large returns, most of which occur

in the asymmetric information regime immediately following a price jump.

The sample kurtosis for the simulation return data is 49.49 (by way of comparison,
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Figure 7. Distribution of absolute returns for simulation data and stock data, along
with the cumulative distribution of the absolute value of a random variable drawn from
a standard normal distribution

the sample kurtosis for the large cap stocks is 19.49 and that for the small cap stocks

is 13.18). The exact shape of the distribution is affected by parameters like artificial

inflation of the spread and inventory control. If the market-maker were to dynamically

change the spread during the course of a simulation based on factors like competition

or the need to maintain market quality, perhaps that would yield power law tails.

5. Summary

This paper extends the Glosten-Milgrom model of dealer markets by describing an

algorithm for maintaining a probability density estimate of the true value of a stock in

a dynamic market with regular shocks to the value and using this estimate to explicitly

set prices in a somewhat realistic framework. We explicitly incorporate noise into the

specification of informed trading, allowing for a rich range of market behavior. A careful
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empirical evaluation of characteristics of the market-making algorithm in simulation

yields helpful insights for the problem of designing a market-making agent. Further,

this framework allows us to develop an agent-based model of a dealer market and study

time series, distributional and other properties of prices, and interesting interactions

between different parameters.

There are two regimes in the simulated markets. Immediately following a price

jump, information is very heterogeneous, spreads are high, and the market is volatile.

This informational asymmetry gets resolved rapidly, and the market settles into a regime

of homogeneous information with small spreads and low volatility. Analyzing time series

and distributional properties of returns in our model shows some similarities and some

differences from real data. The differences, in particular, could serve as a starting point

for further extensions of this model to computationally study the effects of information

and explicit modeling of the true value process in price formation.
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